Using X for the first time can be somewhat of a shock to someone familiar with other graphical environments, such as Microsoft® Windows® or Mac OS®.
While it is not necessary to understand all of the details of various X components and how they interact, some basic knowledge makes it possible to take advantage of X's strengths.
X is not the first window system written for UNIX®, but it is the most popular of them. X's original development team had worked on another window system prior to writing X. That system's name was “W” (for “Window”). X was just the next letter in the Roman alphabet.
X can be called “X”, “X Window System”, “X11”, and a number of other terms. You may find that using the term “X Windows” to describe X11 can be offensive to some people; for a bit more insight on this, see X(7).
X was designed from the beginning to be network-centric, and adopts a “client-server” model.
In the X model, the “X server” runs on the computer that has the keyboard, monitor, and mouse attached. The server's responsibility includes tasks such as managing the display, handling input from the keyboard and mouse, and other input or output devices (i.e., a “tablet” can be used as an input device, and a video projector may be an alternative output device). Each X application (such as XTerm, or Netscape®) is a “client”. A client sends messages to the server such as “Please draw a window at these coordinates”, and the server sends back messages such as “The user just clicked on the OK button”.
In a home or small office environment, the X server and the X clients commonly run on the same computer. However, it is perfectly possible to run the X server on a less powerful desktop computer, and run X applications (the clients) on, say, the powerful and expensive machine that serves the office. In this scenario the communication between the X client and server takes place over the network.
This confuses some people, because the X terminology is exactly backward to what they expect. They expect the “X server” to be the big powerful machine down the hall, and the “X client” to be the machine on their desk.
It is important to remember that the X server is the machine with the monitor and keyboard, and the X clients are the programs that display the windows.
There is nothing in the protocol that forces the client and server machines to be running the same operating system, or even to be running on the same type of computer. It is certainly possible to run an X server on Microsoft Windows or Apple's Mac OS, and there are various free and commercial applications available that do exactly that.
The X design philosophy is much like the UNIX design philosophy, “tools, not policy”. This means that X does not try to dictate how a task is to be accomplished. Instead, tools are provided to the user, and it is the user's responsibility to decide how to use those tools.
This philosophy extends to X not dictating what windows should look like on screen, how to move them around with the mouse, what keystrokes should be used to move between windows (i.e., Alt+Tab, in the case of Microsoft Windows), what the title bars on each window should look like, whether or not they have close buttons on them, and so on.
Instead, X delegates this responsibility to an application called a “Window Manager”. There are dozens of window managers available for X: AfterStep, Blackbox, ctwm, Enlightenment, fvwm, Sawfish, twm, Window Maker, and more. Each of these window managers provides a different look and feel; some of them support “virtual desktops”; some of them allow customized keystrokes to manage the desktop; some have a “Start” button or similar device; some are “themeable”, allowing a complete change of look-and-feel by applying a new theme. These window managers, and many more, are available in the x11-wm category of the Ports Collection.
In addition, the KDE and GNOME desktop environments both have their own window managers which integrate with the desktop.
Each window manager also has a different configuration mechanism; some expect configuration file written by hand, others feature GUI tools for most of the configuration tasks; at least one (Sawfish) has a configuration file written in a dialect of the Lisp language.
Focus Policy: Another feature the window manager is responsible for is the mouse “focus policy”. Every windowing system needs some means of choosing a window to be actively receiving keystrokes, and should visibly indicate which window is active as well.
A familiar focus policy is called “click-to-focus”. This is the model utilized by Microsoft Windows, in which a window becomes active upon receiving a mouse click.
X does not support any particular focus policy. Instead, the window manager controls which window has the focus at any one time. Different window managers will support different focus methods. All of them support click to focus, and the majority of them support several others.
The most popular focus policies are:
- focus-follows-mouse
The window that is under the mouse pointer is the window that has the focus. This may not necessarily be the window that is on top of all the other windows. The focus is changed by pointing at another window, there is no need to click in it as well.
- sloppy-focus
This policy is a small extension to focus-follows-mouse. With focus-follows-mouse, if the mouse is moved over the root window (or background) then no window has the focus, and keystrokes are simply lost. With sloppy-focus, focus is only changed when the cursor enters a new window, and not when exiting the current window.
- click-to-focus
The active window is selected by mouse click. The window may then be “raised”, and appear in front of all other windows. All keystrokes will now be directed to this window, even if the cursor is moved to another window.
Many window managers support other policies, as well as variations on these. Be sure to consult the documentation for the window manager itself.
The X approach of providing tools and not policy extends to the widgets seen on screen in each application.
“Widget” is a term for all the items in the user interface that can be clicked or manipulated in some way; buttons, check boxes, radio buttons, icons, lists, and so on. Microsoft Windows calls these “controls”.
Microsoft Windows and Apple's Mac OS both have a very rigid widget policy. Application developers are supposed to ensure that their applications share a common look and feel. With X, it was not considered sensible to mandate a particular graphical style, or set of widgets to adhere to.
As a result, do not expect X applications to have a common look and feel. There are several popular widget sets and variations, including the original Athena widget set from MIT, Motif® (on which the widget set in Microsoft Windows was modeled, all bevelled edges and three shades of grey), OpenLook, and others.
Most newer X applications today will use a modern-looking widget set, either Qt, used by KDE, or GTK+, used by the GNOME project. In this respect, there is some convergence in look-and-feel of the UNIX desktop, which certainly makes things easier for the novice user.